219 research outputs found

    Nuclear Photonics

    Full text link
    With new gamma-beam facilities like MEGa-ray at LLNL (USA) or ELI-NP at Bucharest with 10^13 g/s and a bandwidth of Delta E_g/E_g ~10^-3, a new era of g-beams with energies <=20 MeV comes into operation, compared to the present world-leading HIGS facility (Duke Univ., USA) with 10^8 g/s and Delta E_g/E_g~0.03. Even a seeded quantum FEL for g-beams may become possible, with much higher brilliance and spectral flux. At the same time new exciting possibilities open up for focused g-beams. We describe a new experiment at the g-beam of the ILL reactor (Grenoble), where we observed for the first time that the index of refraction for g-beams is determined by virtual pair creation. Using a combination of refractive and reflective optics, efficient monochromators for g-beams are being developed. Thus we have to optimize the system of the g-beam facility, the g-beam optics and g-detectors. We can trade g-intensity for band width, going down to Delta E_g/E_g ~ 10^-6 and address individual nuclear levels. 'Nuclear photonics' stresses the importance of nuclear applications. We can address with g-beams individual nuclear isotopes and not just elements like with X-ray beams. Compared to X rays, g-beams can penetrate much deeper into big samples like radioactive waste barrels, motors or batteries. We can perform tomography and microscopy studies by focusing down to micron resolution using Nucl. Reson. Fluorescence for detection with eV resolution and high spatial resolution. We discuss the dominating M1 and E1 excitations like scissors mode, two-phonon quadrupole octupole excitations, pygmy dipole excitations or giant dipole excitations under the new facet of applications. We find many new applications in biomedicine, green energy, radioactive waste management or homeland security. Also more brilliant secondary beams of neutrons and positrons can be produced.Comment: 8 pages, 3 figures, 2 table

    The Refractive Index of Silicon at Gamma Ray Energies

    Full text link
    The index of refraction n(E_{\gamma})=1+\delta(E_{\gamma})+i\beta(E_{\gamma}) is split into a real part \delta and an absorptive part \beta. The absorptive part has the three well-known contributions to the cross section \sigma_{abs}: the photo effect, the Compton effect and the pair creation, but there is also the inelastic Delbr\"uck scattering. Second-order elastic scattering cross sections \sigma_{sca} with Rayleigh scattering (virtual photo effect), virtual Compton effect and Delbr\"uck scattering (virtual pair creation) can be calculated by integrals of the Kramers-Kronig dispersion relations from the cross section \sigma_{abs}. The real elastic scattering amplitudes are proportional to the refractive indices \delta_{photo}, \delta_{Compton} and \delta_{pair}. While for X-rays the negative \delta_{photo} dominates, we show for the first time experimentally and theoretically that the positive \delta_{pair} dominates for \gamma rays, opening a new era of \gamma optics applications, i.e. of nuclear photonics.Comment: 4 pages, 3 figure

    Nuclear photonics at ultra-high counting rates and higher multipole excitations

    Full text link
    Next-generation gamma beams beams from laser Compton-backscattering facilities like ELI-NP (Bucharest)] or MEGa-Ray (Livermore) will drastically exceed the photon flux presently available at existing facilities, reaching or even exceeding 10^13 gamma/sec. The beam structure as presently foreseen for MEGa-Ray and ELI-NP builds upon a structure of macro-pulses (~120 Hz) for the electron beam, accelerated with X-band technology at 11.5 GHz, resulting in a micro structure of 87 ps distance between the electron pulses acting as mirrors for a counterpropagating intense laser. In total each 8.3 ms a gamma pulse series with a duration of about 100 ns will impinge on the target, resulting in an instantaneous photon flux of about 10^18 gamma/s, thus introducing major challenges in view of pile-up. Novel gamma optics will be applied to monochromatize the gamma beam to ultimately Delta E/E~10^-6. Thus level-selective spectroscopy of higher multipole excitations will become accessible with good contrast for the first time. Fast responding gamma detectors, e.g. based on advanced scintillator technology (e.g. LaBr3(Ce)) allow for measurements with count rates as high as 10^6-10^7 gamma/s without significant drop of performance. Data handling adapted to the beam conditions could be performed by fast digitizing electronics, able to sample data traces during the micro-pulse duration, while the subsequent macro-pulse gap of ca. 8 ms leaves ample time for data readout. A ball of LaBr3 detectors with digital readout appears to best suited for this novel type of nuclear photonics at ultra-high counting rates.Comment: 4 pages, 1 figure, 1 tabl
    • …
    corecore